Fall, 2017 Programming for Business Computing 1

PROGRAMMING FOR BUSINESS
COMPUTING
ﬁ::lﬁ'_‘_'_*m_tnin

Module 2-3: Data Structures

Hsin-Min Lu
X
DR BEZ

Programming for Business Computing 2

Data Structures in Python

- A data structure is a particular way of organizing data in a
computer so that it can be used efficiently.

- Python has many built-in data structures
- list (discussed before)
- tuple
- dictionary
- set
- datetime (to handle date and time data)
- ... and more.

- We are going to cover selected data structures that are
Important for you.

194

Programming for Business Computing 3

TUPLES

Fall, 2017 Programming for Business Computing 4

Tuples

- Same as lists, but
- Immutable
- Enclosed in parentheses

- Atuple with a single element must have a comma inside the
parentheses: a = (11,)

>>> mytuple = (11, 22, 33)

>>> mytuple[0]
11

>>> mytuple[-1]
33

>>> mytuple[0:1]
(11,)

#The comma is required!

Programming for Business Computing 5

Why?

It is clear that [11] and 11 are different (list of one element
and integer 11)

But,

(11) is an acceptable expression
(11) without the comma is the integer 11
(11,) with the comma is a tuple containing the integer 11

A small (but critical) piece of info that you need to know.

Fall, 2017 Programming for Business Computing

Tuples are Immutable

- >>> mytuple = (11, 22, 33)
- >>> saved = mytuple
- >>> mytuple += (44,)
«>>> mytuple
(11, 22, 33, 44)
* >>> saved
(11, 22, 33)

Programming for Business Computing 7
Things that do not work

- mytuple += 55
Traceback (most recent call last):Z

TypeError:

can only concatenate tuple (not "int") to
tuple

- Be aware of this

Programming for Business Computing 8
Sorting tuples

>>> atuple = (33, 22, 11)
>>> atuple.sort()
Traceback (most recent call last):

AttributeError:
'tuple’ object has no attribute 'sort'

>>> atuple = sorted(atuple)

[11, 22, 33]

sorted() returns a list!

194

Fall, 2017 Programming for Business Computing 9

Tuple and List Share Similar Operations

>>> atuple = (11, 22, 33)

>>> len(atuple)
3

>>> 44 in atuple
False

Fall, 2017 Programming for Business Computing

Converting Lists into Tuples

>>> alist [11, 22, 33]

>>> atuple = tuple(alist)

>>> atuple

(11, 22, 33)

>>> newtuple = tuple('Hello World!")
>>> newtuple

(IH') 'e', 'llJ 'llJ 'O'J l IJ 'W', 'O
1, d,)

10

Programming for Business Computing 11
Example: Taiwan ID Checksum

- Recall the process of computing Taiwan ID checksum.
- Convert the first letter to a two-digit number

- Apply weight to all 11 digits.

- Sum over all digits.

Fall, 2017 Programming for Business Computing 12

def

cksum twid(idstr):

"""Compute Checksum for Taiwn ID"""

codel = ord(idstr[0])

fconvert first English character to two-digit

number.

19,
30,

1d1l

cmap = [10, 11, 12, 13, 14, 15, 1le6, 17, 34, 18,
20, 21, 22, 35, 23, 24, 25, 206, 27, 28, 29, 32,
31, 33]
numl = cmap[codel - 65]
newid = str(numl) + idstr[1l:]
weight = [1, 9, &8, 7, 6, 5, 4, 3, 2, 1, 1]
checksum = 0
for i in range(0, 11):

checksum += weight[i] * int(newid[i])
print("checksum=%d" % checksum)

= "A123456789"

cksum twid(idl)
- Output: checksum=130

Programming for Business Computing 13
Zipping two Variables

- zip: Make an iterator that aggregates elements from each
of the iterables.

newid = "10123456789"
[11 9/ 8/ 7/ 6/ 5/ 4/ 3/ 2/ lr]—]

welght

(1, 1)
for apair in zip(newid, weight): (‘'0', 9)
(1", 8)
(2", 7)
Output: | (3 6)
(‘4. 5)
(5, 4)
(6", 3)
(7', 2)
(‘8" 1)
103 (9% 1)

print (apair)

Fall, 2017 Programming for Business Computing 14

New Version Using “zip()”

def cksum twid vZ2(idstr):
"""Compute Checksum for Taiwn ID"""
codel = ord(idstr[0])
fconvert first English character to two-digit number.

cmap = [10, 11, 12, 13, 14, 15, 1e¢, 17, 34, 18, 19, 20,
21, 22, 35, 23, 24, 25, 26, 27, 28, 29, 32, 30, 31, 33]

numl = cmap[codel - 65]

newid = str(numl) + idstr[1l:]

weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]
checksum = 0

for apair in zip(newid, weight):
checksum += apair[l] * int(apair[0])

print ("checksum=%d" % checksum)

#running the function
idl = "A123456789"
cksum twid v2(1dl)
- Output: checksum=130

Programming for Business Computing 15
The Lambda Operator

- Lambda is a way to define simple functions.
>>> def f1 (x):

return x**2

>>> print (f1(8))

64

>>>

>>> 2 = lambda x: x**2
>>> print (£2(8))

64

Programming for Business Computing 16
The Map Operator

- map() provides an easy way to apply an function to a list or
tuples.

- Consider the situation when we want to square all numbers in a
list.

>>> listl=[3,5,1.2, 4, 9]

>>> outl=map(fl, listl)

>>> print(list(outl))

[9, 25, 1.44, 16, 81]

>>>

>>> #using Lambda

>>> out2=map(lambda x: x**2, 1listl)

>>> print(list(out2))

[9, 25, 1.44, 16, 81] o

Fall, 2017 Programming for Business Computing 17

Checksum Using Map and Lambda

def cksum twid v3(idstr):

21,

"""Compute Checksum for Taiwn ID"""

codel = ord(idstr[0])

fconvert first English character to two-digit number.
cmap = [10, 11, 12, 13, 14, 15, 1e¢, 17, 34, 18, 19, 20,
22, 35, 23, 24, 25, 26, 27, 28, 29, 32, 30, 31, 33]
numl = cmap[codel - 65]

newid = str(numl) + idstr[1l:]

weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

outl = map(lambda apair: apair[l] * int(apair[0]),
zip(newid, weight))

checksum=sum (outl)
print ("checksum=%d" % checksum)

idl = "A123456789"
cksum twid v3(1idl)

- Output: checksum=130

Programming for Business Computing

DICTIONARY

Programming for Business Computing 19

The dictionary data structure

- In Python, a dictionary is mapping between a set of
Indices (keys) and a set of values
- The items in a dictionary are key-value pairs

- Keys can be any Python data type
- Because keys are used for indexing, they should be immutable

- Values can be any Python data type
- Values can be mutable or immutable

Fall, 2017

Creating a Dictionary

- >>> eng2cn = dict()

- >>> print(eng2cn)

-1}

« >>>

- >>> eng2cn[‘'one'] = "—'

« >>> eng2cn[‘two"'] = "'

- >>> eng2cn["three'] = "—"
- >>> eng2cn['four'] = "UU"
- >>> print(eng2cn)
«{'one': '—', 'two': '_",

194

"three':

[

J

Programming for Business Computing

"four':

20

gy

Fall, 2017 Programming for Business Computing 21

Creating a dictionary

- >>> eng2cn = {'two': "', 'three': "'—",
‘four': 'Ig', 'one': '—'}

- >>> print(eng2cn)

«{'two': '_', 'three': '=', 'four': 'O,
‘one': '—'}

- In general, the order of items in a dictionary is
unpredictable

- Dictionaries are indexed by keys (including
iptegers).

{}

n

Fall, 2017 Programming for Business Computing 22

Dictionary indexing

- >>> print(eng2cn['one'])

- >>> print(eng2cn['two'])

—_—

- >>> print(eng2cn['five'])

- Traceback (most recent call last):
File "<input>", line 1, in <module>

- KeyError: 'five'

*If the Index Is not a key In the dictionary,
Python raises an exception £

Fall, 2017 Programming for Business Computing 23

Dictionary indexing

i1f 'five' 1n engZcn:
print (engZ2cn['five'])
#no output

>>> print(eng2cn.get('five'))
None

19

Programming for Business Computing 24

The in operator

- Note that the in operator works differently for

dictionaries than for other sequences

- For strings, lists, and tuples, x in y means whether
x IS an item in the sequence

- For dictionaries, x in y checks whether x is a key in
the dictionary &

Fall, 2017 Programming for Business Computing 25

Keys and values

- The keys method returns a list of the keys In
a dictionary

- The values method returns a list of the
values

>>> print(eng2cn.keys())

dict keys(['two', 'three', 'four',
‘one'])

>>> print(eng2cn.values())

dict values(['—', '="', 'HFg', '—'])

Fall, 2017 Programming for Business Computing 26

Keys and values

- The items method returns a list of tuple
pairs of the key-value pairs in a dictionary

>>> print(eng2cn.items())
dict items([('two', '—~'), ('three', '
=", ('four', '4"), ('one', '—')])

19

Fall, 2017 Programming for Business Computing 27

Example from Section 11.2,
Think Python Ver 2.2.17

Example:

def histogram(seq):
d = dict()
for element in seq:
if element not in d:
d[element] = 1
else:
d[element] += 1
return d

h = histogram('brontosaurus")
print(h)

- Qutput:
{'a': 1, 'b': l, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't l}

Fall, 2017 Programming for Business Computing 28

Example from Chapter 11,
Think Python Ver 2.2.17

Example:

Another way to output results:

def print_hist(hist):
for key in hist:
print(key, hist[key])

. Output:
h = histogram('brontosaurus’) 31
print_hist(h) b1
o 2
n 1
s 2
r 2
u 2
t1

Fall, 2017 Programming for Business Computing 29

Example from Chapter 11,
Think Python Ver 2.2.17

Example:

Change the print_hist function:

def print hist2(hist):
for key, value in hist.items():

print (key, value)

Output:

al
h = histogram('brontosaurus') b 1
print hist2 (h) ﬁi

s 2

r 2

u 2

t 1

Fall, 2017 Programming for Business Computing 30

Example from Chapter 11,
Think Python Ver 2.2.17

Sorting the keys
Change the print_hist function:

def print hist3(hist):
keys = hist.keys|()

for key in sorted(keys): Output:
print (key, hist[key]) Si
n 1
: o 2
h = histogram('brontosaurus') r2
print hist3(h) ii
u 2

Fall, 2017 Programming for Business Computing 31

Using lists as values

- Inverting the mapping: What are the letters with a

given count?
def invert dict(d):
inv = dict ()
for key in d:
val = d[key]
if val not in inv:
invi[val] = [key]
else:
inv[val].append(key)

return inv

Example from Chapter 11, 02
Think Python Ver 2.2.17

Programming for Business Computing 32
Inverting the Mapping: Example

def invert_dict(d):
inv = dict()
for key in d:
val = d[key]
if val not in inv:
inv[val] = [key] Output:
else: {*a’t 1, 'p': 1, 'r'r 2, "t': 1, 'o': 1}
inv[val].append(key) {1: ["a’, 'p', 'tY, To'], 20 ['r']}
return inv

hist = histogram('parrot’)
print (hist)

inverted = invert_dict(hist)
print (inverted)

o Example from Chapter 11,
Think Python Ver 2.2.17

Programming for Business Computing

SETS

Fall, 2017 Programming for Business Computing 34

Sets

- Identified by curly braces
- {'Marry', 'Bob’, 'John'}
- {'Dean'} is a singleton

- Sets can only contain unique elements
- Duplicates are eliminated

- Immutable like tuples and strings &

>>> cset = {11, 11, 22}

>>> cset
{11, 22}

194

Fall, 2017 Programming for Business Computing 35

Sets are Immutable

>>> aset = {11, 22, 33}
>>> bset = aset

>>> #union of two sets
>>> aset = aset | {55}
>>>

>>> aset

{33, 11, 22, 55}

>>> bset

{33, 11, 22}

194

Fall, 2017

Sets have no Order

«->> {1, 2, 3, 4, 5, 6, 7}
-{1, 2, 3, 4, 5, 6, 7}

- >>> {11, 22, 33}

.- {33, 11, 22}

194

Programming for Business Computing 37
Sets do not Support Indexing

- >>> myset = {' A&, "ESAEET, M}
* >>> myset

-, CREERET, TRHER')

- >>> myset[0]

- Traceback (most recent call last):

File "<input>", line 1, in <module>
- TypeError: 'set' object does not support indexing

194

Fall, 2017 Programming for Business Computing 38

Examples

>>> alist = ["R&', "&%EE', "#WF, "KRZE, BT
>>> aset = set(alist)
>>> aset
{"&=r", "W, TREEEE', "KRZE'}
>>> #set does not support + operation
>>> aset = aset + {'iFhp'}
Traceback (most recent call last):
File "<input>", line 1, in <module>

TypeError: unsupported operand type(s) for +:
and 'set'

194

set

Fall, 2017 Programming for Business Computing 39

Boolean Operations on sets

>>> aset = {11, 22, 33}
>>> bset = {12, 23, 33}

Union of two sets

>>> aset | bset
{33, 22, 23, 11, 12}

Intersection of two sets:
>>> aset & bset

133}
19

Fall, 2017 Programming for Business Computing 40

Boolean Operations on sets

>>> aset = {11, 22, 33}
>>> bset = {12, 23, 33}

Difference:

>>> aset - bset
{11, 22}

Symmetric difference:

>>> aset N bset
{11, 12, 22, 23}

Contains all elements that are either
in set A but not in set B or
in set B but not in set A

194

Programming for Business Computing

DATETIME

Programming for Business Computing 42
Handling Date and Time in Python

- Python has a build-in library “datetime” that can process
date and time data.
- Need to do “import datetime” first

>>> import datetime

>>> #create datetime by year, month, day
>>> dl=datetime.datetime(26005,5,3)

>>> dl

datetime.datetime (2005, 5, 3, 0, 0O)

>>> print(dl)

2005-05-03 00:00:00

Programming for Business Computing
The datetime Object

>>> #create datetime by

>>> # year, month, day, hour, minute, second
>>> d2=datetime.datetime(2017, 2, 5, 8, 5, 20)
>>> d2

datetime.datetime(2017, 2, 5, 8, 5, 20)

>>> print(d2)

2017-02-05 08:05:20

>>> #extract the date components

>>> d2.date()

datetime.date(2017, 2, 5)

>>> #extract the time component

>>> d2.time()

datetime.time(8, 5, 20)

43

Programming for Business Computing 44
Getting Date-of-Week, and Today’s Date

« >>> #get day-of-weeRr

« >>> ##Monday 1s © and Sunday 1s 6
- >>> d2.date() .weekday()

* 6

« >>> #return today's date
- >>> datetime.date.today()
- datetime.date(2017, 8, 22)

Programming for Business Computing 45
Getting the Value of Each Slot

« >>> #get value of each slot
- >>> d2.year

- 2017

« >>> d2.month
« 2

- >>> d2.day
5

« >>> d2.hour

- 8

¢ >>> d2.minute
«5

- >>> d2.second
- 20

Fall, 2017 Programming for Business Computing

Difference of Datetime

>>> d3=datetime.datetime(1998, 2, 5, 8, 5, 20)
>>> d4=datetime.datetime(1999, 2, 1, 22, 4, 15)
>>> diff = d4 - d3

>>> #difference 1n days + seconds

>>> diff

datetime.timedelta(361, 50335)

>>> print(diff)

361 days, 13:58:55

>>> #get individual slots

>>> diff.days

361

>>> diff.seconds

50335

46

Programming for Business Computing 47
Time Shifting by timedelta

- >>> diff2 = datetime.timedelta(days=3,seconds=4)
- >>> d5 = datetime.datetime(2000,1,1,0,0,0)

*>>> d6é = d5 + diff2

« >>> print(de6)

« 2000-01-04 00:00:04

Fall, 2017 Programming for Business Computing 48

Datetime €=>»String

>>> #datetime to string

>>> d7 = datetime.datetime(2002,5,2,13,15,45)
>>> print(str(d7))

2002-05-02 13:15:45

>>> print(d7.strftime(' %Y-%m-%d"))

2002-05-02

>>> print(d7.strftime('%B Z%d, %Y'))

May 02, 2002

>>> print(d7.strftime (' %Y-%m-%d Z%H:%M:%S"))
2002-05-02 13:15:45

>>> print(d7.strftime(' %Y-%m-7%d %I1:%M:%S %p, %A"))
2002-05-02 01:15:45 PM, Thursday

>>>

Programming for Business Computing 49
Datetime €=>»String

« >>> #string to datetime.

« >>> dstr = "2007-03-04 21:08:12"

- >>> d9 = datetime.datetime.strptime(dstr, "%Y-%m-%d
%H:%M:%S")

« >>> d9

- datetime.datetime(2007, 3, 4, 21, 8, 12)

- Full document here:
https://docs.python.org/3/library/datetime.html#st
ritime-strptime-behavior

https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior

Programming for Business Computing

THANK YOU!

Questions?

