
PROGRAMMING FOR BUSINESS

COMPUTING

商管程式設計

Module 2-3: Data Structures

Hsin-Min Lu

盧信銘

台大資管系

Fall, 2017 Programming for Business Computing 1

• A data structure is a particular way of organizing data in a

computer so that it can be used efficiently.

• Python has many built-in data structures

• list (discussed before)

• tuple

• dictionary

• set

• datetime (to handle date and time data)

• … and more.

• We are going to cover selected data structures that are

important for you.

Fall, 2017 Programming for Business Computing 2

Data Structures in Python

☼

TUPLES

Fall, 2017 Programming for Business Computing 3

Tuples

• Same as lists, but
• Immutable

• Enclosed in parentheses

• A tuple with a single element must have a comma inside the
parentheses: a = (11,)

>>> mytuple = (11, 22, 33)
>>> mytuple[0]
11
>>> mytuple[-1]
33
>>> mytuple[0:1]
(11,)
#The comma is required!

☼

Fall, 2017 Programming for Business Computing 4

Why?

• It is clear that [11] and 11 are different (list of one element

and integer 11)

• But,

• (11) is an acceptable expression

• (11) without the comma is the integer 11

• (11,) with the comma is a tuple containing the integer 11

• A small (but critical) piece of info that you need to know.

☼

Fall, 2017 Programming for Business Computing 5

Tuples are immutable

• >>> mytuple = (11, 22, 33)

• >>> saved = mytuple

• >>> mytuple += (44,)

• >>> mytuple
(11, 22, 33, 44)

• >>> saved
(11, 22, 33)

☼

Fall, 2017 Programming for Business Computing 6

Things that do not work

• mytuple += 55
Traceback (most recent call last):Z
…
TypeError:
can only concatenate tuple (not "int") to
tuple

• Be aware of this ….

☼

Fall, 2017 Programming for Business Computing 7

Sorting tuples

>>> atuple = (33, 22, 11)

>>> atuple.sort()
Traceback (most recent call last):
…
AttributeError:
'tuple' object has no attribute 'sort'

>>> atuple = sorted(atuple)

>>> atuple
[11, 22, 33]

Tuples are immutable!

sorted() returns a list!

☼

Fall, 2017 Programming for Business Computing 8

Tuple and List Share Similar Operations

>>> atuple = (11, 22, 33)

>>> len(atuple)
3

>>> 44 in atuple
False

☼

Fall, 2017 Programming for Business Computing 9

Converting Lists into Tuples

>>> alist = [11, 22, 33]

>>> atuple = tuple(alist)

>>> atuple
(11, 22, 33)

>>> newtuple = tuple('Hello World!')

>>> newtuple
('H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r',
'l', 'd', '!')

☼

Fall, 2017 Programming for Business Computing 10

• Recall the process of computing Taiwan ID checksum.

• Convert the first letter to a two-digit number

• Apply weight to all 11 digits.

• Sum over all digits.

Fall, 2017 Programming for Business Computing 11

Example: Taiwan ID Checksum

def cksum_twid(idstr):

"""Compute Checksum for Taiwn ID"""

code1 = ord(idstr[0])

#convert first English character to two-digit
number.

cmap = [10, 11, 12, 13, 14, 15, 16, 17, 34, 18,
19, 20, 21, 22, 35, 23, 24, 25, 26, 27, 28, 29, 32,
30, 31, 33]

num1 = cmap[code1 - 65]

newid = str(num1) + idstr[1:]

weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

checksum = 0

for i in range(0, 11):

checksum += weight[i] * int(newid[i])

print("checksum=%d" % checksum)

id1 = "A123456789"

cksum_twid(id1)

• Output: checksum=130

Fall, 2017 Programming for Business Computing 12

• zip: Make an iterator that aggregates elements from each

of the iterables.

newid = '10123456789'

weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

for apair in zip(newid, weight):

print(apair)

• Output:

Fall, 2017 Programming for Business Computing 13

Zipping two Variables

('1', 1)

('0', 9)

('1', 8)

('2', 7)

('3', 6)

('4', 5)

('5', 4)

('6', 3)

('7', 2)

('8', 1)

('9', 1)☼

def cksum_twid_v2(idstr):

"""Compute Checksum for Taiwn ID"""

code1 = ord(idstr[0])

#convert first English character to two-digit number.

cmap = [10, 11, 12, 13, 14, 15, 16, 17, 34, 18, 19, 20,
21, 22, 35, 23, 24, 25, 26, 27, 28, 29, 32, 30, 31, 33]

num1 = cmap[code1 - 65]

newid = str(num1) + idstr[1:]

weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

checksum = 0

for apair in zip(newid, weight):

checksum += apair[1] * int(apair[0])

print("checksum=%d" % checksum)

#running the function

id1 = "A123456789"

cksum_twid_v2(id1)

• Output: checksum=130

Fall, 2017 Programming for Business Computing 14

New Version Using “zip()”

☼

• Lambda is a way to define simple functions.

>>> def f1 (x):

... return x**2

...

>>> print (f1(8))

64

>>>

>>> f2 = lambda x: x**2

>>> print (f2(8))

64

Fall, 2017 Programming for Business Computing 15

The Lambda Operator

☼

• map() provides an easy way to apply an function to a list or
tuples.

• Consider the situation when we want to square all numbers in a
list.

>>> list1=[3,5,1.2, 4, 9]

>>> out1=map(f1, list1)

>>> print(list(out1))

[9, 25, 1.44, 16, 81]

>>>

>>> #using lambda

>>> out2=map(lambda x: x**2, list1)

>>> print(list(out2))

[9, 25, 1.44, 16, 81]

Fall, 2017 Programming for Business Computing 16

The Map Operator

☼

def cksum_twid_v3(idstr):

"""Compute Checksum for Taiwn ID"""

code1 = ord(idstr[0])

#convert first English character to two-digit number.

cmap = [10, 11, 12, 13, 14, 15, 16, 17, 34, 18, 19, 20,
21, 22, 35, 23, 24, 25, 26, 27, 28, 29, 32, 30, 31, 33]

num1 = cmap[code1 - 65]

newid = str(num1) + idstr[1:]

weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

out1 = map(lambda apair: apair[1] * int(apair[0]),

zip(newid, weight))

checksum=sum(out1)

print("checksum=%d" % checksum)

id1 = "A123456789"

cksum_twid_v3(id1)

• Output: checksum=130

Fall, 2017 Programming for Business Computing 17

Checksum Using Map and Lambda

☼

DICTIONARY

Fall, 2017 Programming for Business Computing 18

The dictionary data structure

• In Python, a dictionary is mapping between a set of

indices (keys) and a set of values

• The items in a dictionary are key-value pairs

• Keys can be any Python data type

• Because keys are used for indexing, they should be immutable

• Values can be any Python data type

• Values can be mutable or immutable

☼

Fall, 2017 Programming for Business Computing 19

Creating a Dictionary

• >>> eng2cn = dict()

• >>> print(eng2cn)

• {}

• >>>

• >>> eng2cn['one'] = '一'

• >>> eng2cn['two'] = '二'

• >>> eng2cn['three'] = '三'

• >>> eng2cn['four'] = '四'

• >>> print(eng2cn)

• {'one': '一', 'two': '二', 'three': '三', 'four': '四'}

☼

Fall, 2017 Programming for Business Computing 20

Creating a dictionary

• >>> eng2cn = {'two': '二', 'three': '三',

'four': '四', 'one': '一'}

• >>> print(eng2cn)

• {'two': '二', 'three': '三', 'four': '四',
'one': '一'}

• In general, the order of items in a dictionary is
unpredictable

• Dictionaries are indexed by keys (including
integers).
☼

Fall, 2017 Programming for Business Computing 21

Dictionary indexing

• >>> print(eng2cn['one'])

• 一

• >>> print(eng2cn['two'])

• 二

• >>> print(eng2cn['five'])

• Traceback (most recent call last):

• File "<input>", line 1, in <module>

• KeyError: 'five'

* If the index is not a key in the dictionary,
Python raises an exception ☼

Fall, 2017 Programming for Business Computing 22

Dictionary indexing

if 'five' in eng2cn:

print(eng2cn['five'])

#no output

>>> print(eng2cn.get('five'))

None

☼

Fall, 2017 Programming for Business Computing 23

The in operator

• Note that the in operator works differently for

dictionaries than for other sequences

• For strings, lists, and tuples, x in y means whether

x is an item in the sequence

• For dictionaries, x in y checks whether x is a key in

the dictionary ☼

Fall, 2017 Programming for Business Computing 24

Keys and values

• The keys method returns a list of the keys in
a dictionary

• The values method returns a list of the
values

>>> print(eng2cn.keys())

dict_keys(['two', 'three', 'four',

'one'])

>>> print(eng2cn.values())

dict_values(['二', '三', '四', '一'])

Fall, 2017 Programming for Business Computing 25

Keys and values

• The items method returns a list of tuple
pairs of the key-value pairs in a dictionary

>>> print(eng2cn.items())

dict_items([('two', '二'), ('three', '

三'), ('four', '四'), ('one', '一')])

☼

Fall, 2017 Programming for Business Computing 26

Example:

def histogram(seq):

d = dict()

for element in seq:

if element not in d:

d[element] = 1

else:

d[element] += 1

return d

h = histogram('brontosaurus')

print(h)

• Output:

{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

☼

Fall, 2017 Programming for Business Computing 27

Example from Section 11.2,

Think Python Ver 2.2.17

Example:

Another way to output results:

def print_hist(hist):

for key in hist:

print(key, hist[key])

h = histogram('brontosaurus')

print_hist(h)

Output:
a 1
b 1
o 2
n 1
s 2
r 2
u 2
t 1

☼

Fall, 2017 Programming for Business Computing 28

Example from Chapter 11,

Think Python Ver 2.2.17

Example:

Change the print_hist function:

def print_hist2(hist):

for key, value in hist.items():

print (key, value)

h = histogram('brontosaurus')

print_hist2(h)

Output:
a 1
b 1
o 2
n 1
s 2
r 2
u 2
t 1

☼

Fall, 2017 Programming for Business Computing 29

Example from Chapter 11,

Think Python Ver 2.2.17

Sorting the keys

Change the print_hist function:

def print_hist3(hist):

keys = hist.keys()

for key in sorted(keys):

print (key, hist[key])

h = histogram('brontosaurus')

print_hist3(h)

Output:
a 1
b 1
n 1
o 2
r 2
s 2
t 1
u 2

☼

Fall, 2017 Programming for Business Computing 30

Example from Chapter 11,

Think Python Ver 2.2.17

Using lists as values

• Inverting the mapping: What are the letters with a

given count?
def invert_dict(d):

inv = dict()

for key in d:

val = d[key]

if val not in inv:

inv[val] = [key]

else:

inv[val].append(key)

return inv

☼

Fall, 2017 Programming for Business Computing 31

Example from Chapter 11,

Think Python Ver 2.2.17

Inverting the Mapping: Example

def invert_dict(d):

inv = dict()

for key in d:

val = d[key]

if val not in inv:

inv[val] = [key]

else:

inv[val].append(key)

return inv

hist = histogram('parrot')

print (hist)

inverted = invert_dict(hist)

print (inverted)

Output:
{'a': 1, 'p': 1, 'r': 2, 't': 1, 'o': 1}
{1: ['a', 'p', 't', 'o'], 2: ['r']}

☼

Fall, 2017 Programming for Business Computing 32

Example from Chapter 11,

Think Python Ver 2.2.17

SETS

Fall, 2017 Programming for Business Computing 33

Sets

• Identified by curly braces

• {'Marry', 'Bob', 'John'}

• {'Dean'} is a singleton

• Sets can only contain unique elements

• Duplicates are eliminated

• Immutable like tuples and strings ☼

Fall, 2017 Programming for Business Computing 34

>>> cset = {11, 11, 22}

>>> cset
{11, 22}

☼

Sets are Immutable

>>> aset = {11, 22, 33}

>>> bset = aset

>>> #union of two sets

>>> aset = aset | {55}

>>>

>>> aset

{33, 11, 22, 55}

>>> bset

{33, 11, 22}

☼

Fall, 2017 Programming for Business Computing 35

Sets have no Order

• >>> {1, 2, 3, 4, 5, 6, 7}

• {1, 2, 3, 4, 5, 6, 7}

• >>> {11, 22, 33}

• {33, 11, 22}

☼

Fall, 2017 Programming for Business Computing 36

Sets do not Support Indexing

• >>> myset = {'大象', '長頸鹿', '蝸牛'}

• >>> myset

• {'蝸牛', '長頸鹿', '大象'}

• >>> myset[0]

• Traceback (most recent call last):

• File "<input>", line 1, in <module>

• TypeError: 'set' object does not support indexing

☼

Fall, 2017 Programming for Business Computing 37

Examples

>>> alist = ['大象', '長頸鹿', '蝸牛', '大象', '猴子']

>>> aset = set(alist)

>>> aset

{'猴子', '蝸牛', '長頸鹿', '大象'}

>>> #set does not support + operation

>>> aset = aset + {'蟒蛇'}

Traceback (most recent call last):

File "<input>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'set'
and 'set'

☼

Fall, 2017 Programming for Business Computing 38

Boolean Operations on sets

>>> aset = {11, 22, 33}

>>> bset = {12, 23, 33}

Union of two sets
>>> aset | bset
{33, 22, 23, 11, 12}

Intersection of two sets:
>>> aset & bset
{33}

☼

Fall, 2017 Programming for Business Computing 39

Boolean Operations on sets

>>> aset = {11, 22, 33}

>>> bset = {12, 23, 33}

Difference:
>>> aset - bset
{11, 22}

Symmetric difference:
>>> aset ^ bset
{11, 12, 22, 23}

☼

Contains all elements that are either

in set A but not in set B or

in set B but not in set A

Fall, 2017 Programming for Business Computing 40

DATETIME

Fall, 2017 Programming for Business Computing 41

• Python has a build-in library “datetime” that can process

date and time data.

• Need to do “import datetime” first

>>> import datetime

>>> #create datetime by year, month, day

>>> d1=datetime.datetime(2005,5,3)

>>> d1

datetime.datetime(2005, 5, 3, 0, 0)

>>> print(d1)

2005-05-03 00:00:00

Fall, 2017 Programming for Business Computing 42

Handling Date and Time in Python

☼

>>> #create datetime by

>>> # year, month, day, hour, minute, second

>>> d2=datetime.datetime(2017, 2, 5, 8, 5, 20)

>>> d2

datetime.datetime(2017, 2, 5, 8, 5, 20)

>>> print(d2)

2017-02-05 08:05:20

>>> #extract the date components

>>> d2.date()

datetime.date(2017, 2, 5)

>>> #extract the time component

>>> d2.time()

datetime.time(8, 5, 20)

Fall, 2017 Programming for Business Computing 43

The datetime Object

☼

• >>> #get day-of-week

• >>> ##Monday is 0 and Sunday is 6

• >>> d2.date().weekday()

• 6

• >>> #return today's date

• >>> datetime.date.today()

• datetime.date(2017, 8, 22)

Fall, 2017 Programming for Business Computing 44

Getting Date-of-Week, and Today’s Date

☼

• >>> #get value of each slot

• >>> d2.year

• 2017

• >>> d2.month

• 2

• >>> d2.day

• 5

• >>> d2.hour

• 8

• >>> d2.minute

• 5

• >>> d2.second
• 20

Fall, 2017 Programming for Business Computing 45

Getting the Value of Each Slot

☼

• >>> d3=datetime.datetime(1998, 2, 5, 8, 5, 20)

• >>> d4=datetime.datetime(1999, 2, 1, 22, 4, 15)

• >>> diff = d4 - d3

• >>> #difference in days + seconds

• >>> diff

• datetime.timedelta(361, 50335)

• >>> print(diff)

• 361 days, 13:58:55

• >>> #get individual slots

• >>> diff.days

• 361

• >>> diff.seconds

• 50335

Fall, 2017 Programming for Business Computing 46

Difference of Datetime

☼

• >>> diff2 = datetime.timedelta(days=3,seconds=4)

• >>> d5 = datetime.datetime(2000,1,1,0,0,0)

• >>> d6 = d5 + diff2

• >>> print(d6)

• 2000-01-04 00:00:04

Fall, 2017 Programming for Business Computing 47

Time Shifting by timedelta

☼

• >>> #datetime to string

• >>> d7 = datetime.datetime(2002,5,2,13,15,45)

• >>> print(str(d7))

• 2002-05-02 13:15:45

• >>> print(d7.strftime('%Y-%m-%d'))

• 2002-05-02

• >>> print(d7.strftime('%B %d, %Y'))

• May 02, 2002

• >>> print(d7.strftime('%Y-%m-%d %H:%M:%S'))

• 2002-05-02 13:15:45

• >>> print(d7.strftime('%Y-%m-%d %I:%M:%S %p, %A'))

• 2002-05-02 01:15:45 PM, Thursday

• >>>

Fall, 2017 Programming for Business Computing 48

DatetimeString

☼

• >>> #string to datetime.

• >>> dstr = "2007-03-04 21:08:12"

• >>> d9 = datetime.datetime.strptime(dstr, "%Y-%m-%d

%H:%M:%S")

• >>> d9

• datetime.datetime(2007, 3, 4, 21, 8, 12)

• Full document here:

https://docs.python.org/3/library/datetime.html#st

rftime-strptime-behavior

Fall, 2017 Programming for Business Computing 49

DatetimeString

☼

https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior

THANK YOU!
Questions?

Fall, 2017 Programming for Business Computing 50

