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• A data structure is a particular way of organizing data in a 

computer so that it can be used efficiently.

• Python has many built-in data structures

• list (discussed before)

• tuple

• dictionary

• set

• datetime (to handle date and time data)

• … and more. 

• We are going to cover selected data structures that are 

important for you. 
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Data Structures in Python

☼



TUPLES
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Tuples

• Same as lists, but
• Immutable

• Enclosed in parentheses

• A tuple  with a single element must have a comma inside the 
parentheses: a = (11,)

>>> mytuple = (11, 22, 33)
>>> mytuple[0]
11
>>> mytuple[-1]
33
>>> mytuple[0:1]
(11,)
#The comma is required!

☼
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Why?

• It is clear that [11] and 11 are different (list of one element 

and integer 11)

• But, 

• (11) is an acceptable expression

• (11) without the comma is the integer 11

• (11, ) with the comma is  a tuple containing the integer 11

• A small (but critical) piece of info that you need to know. 

☼
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Tuples are immutable

• >>> mytuple = (11, 22, 33)

• >>> saved = mytuple

• >>> mytuple += (44,)

• >>> mytuple
(11, 22, 33, 44)

• >>> saved
(11, 22, 33)

☼
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Things that do not work

• mytuple += 55
Traceback (most recent call last):Z
…
TypeError:
can only concatenate tuple (not "int") to 
tuple

• Be aware of this ….

☼
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Sorting tuples

>>> atuple = (33, 22, 11)

>>> atuple.sort()
Traceback (most recent call last):
…
AttributeError:
'tuple' object has no attribute 'sort'

>>> atuple = sorted(atuple)

>>> atuple
[11, 22, 33]

Tuples are immutable!

sorted( )  returns a list!

☼
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Tuple and List Share Similar Operations

>>> atuple = (11, 22, 33)

>>> len(atuple)
3

>>> 44 in atuple
False

☼
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Converting Lists into Tuples

>>> alist = [11, 22, 33]

>>> atuple = tuple(alist)

>>> atuple
(11, 22, 33)

>>> newtuple = tuple('Hello World!')

>>> newtuple
('H', 'e', 'l', 'l', 'o', ' ', 'W', 'o', 'r', 
'l', 'd', '!')

☼
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• Recall the process of computing Taiwan ID checksum.

• Convert the first letter to a two-digit number

• Apply weight to all 11 digits.

• Sum over all digits. 
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Example: Taiwan ID Checksum



def cksum_twid(idstr):

"""Compute Checksum for Taiwn ID"""

code1 = ord(idstr[0])

#convert first English character to two-digit 
number.

cmap = [10, 11, 12, 13, 14, 15, 16, 17, 34, 18,
19, 20, 21, 22, 35, 23, 24, 25, 26, 27, 28, 29, 32,
30, 31, 33]

num1 = cmap[code1 - 65]

newid = str(num1) + idstr[1:]

weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

checksum = 0

for i in range(0, 11):

checksum += weight[i] * int(newid[i])

print("checksum=%d" % checksum)

id1 = "A123456789"

cksum_twid(id1)

• Output: checksum=130

Fall, 2017 Programming for Business Computing 12



• zip: Make an iterator that aggregates elements from each 

of the iterables.

newid = '10123456789'

weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

for apair in zip(newid, weight):

print(apair)

• Output:
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Zipping two Variables 

('1', 1)

('0', 9)

('1', 8)

('2', 7)

('3', 6)

('4', 5)

('5', 4)

('6', 3)

('7', 2)

('8', 1)

('9', 1)☼



def cksum_twid_v2(idstr):

"""Compute Checksum for Taiwn ID"""

code1 = ord(idstr[0])

#convert first English character to two-digit number.

cmap = [10, 11, 12, 13, 14, 15, 16, 17, 34, 18, 19, 20,
21, 22, 35, 23, 24, 25, 26, 27, 28, 29, 32, 30, 31, 33]

num1 = cmap[code1 - 65]

newid = str(num1) + idstr[1:]

weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

checksum = 0

for apair in zip(newid, weight):

checksum += apair[1] * int(apair[0])

print("checksum=%d" % checksum)

#running the function

id1 = "A123456789"

cksum_twid_v2(id1)

• Output: checksum=130
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New Version Using “zip()”

☼



• Lambda is a way to define simple functions. 

>>> def f1 (x):

... return x**2

... 

>>> print (f1(8))

64

>>> 

>>> f2 = lambda x: x**2

>>> print (f2(8))

64
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The Lambda Operator

☼



• map() provides an easy way to apply an function to a list or 
tuples.

• Consider the situation when we want to square all numbers in a 
list.

>>> list1=[3,5,1.2, 4, 9]

>>> out1=map(f1, list1)

>>> print(list(out1))

[9, 25, 1.44, 16, 81]

>>> 

>>> #using lambda

>>> out2=map(lambda x: x**2, list1)

>>> print(list(out2))

[9, 25, 1.44, 16, 81]
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The Map Operator

☼



def cksum_twid_v3(idstr):

"""Compute Checksum for Taiwn ID"""

code1 = ord(idstr[0])

#convert first English character to two-digit number.

cmap = [10, 11, 12, 13, 14, 15, 16, 17, 34, 18, 19, 20,
21, 22, 35, 23, 24, 25, 26, 27, 28, 29, 32, 30, 31, 33]

num1 = cmap[code1 - 65]

newid = str(num1) + idstr[1:]

weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]

out1 = map(lambda apair: apair[1] * int(apair[0]),

zip(newid, weight))

checksum=sum(out1)

print("checksum=%d" % checksum)

id1 = "A123456789"

cksum_twid_v3(id1)

• Output: checksum=130
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Checksum Using Map and Lambda

☼



DICTIONARY
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The dictionary data structure

• In Python, a dictionary is mapping between a set of 

indices (keys) and a set of values

• The items in a dictionary are key-value pairs

• Keys can be any Python data type

• Because keys are used for indexing, they should be immutable

• Values can be any Python data type

• Values can be mutable or immutable

☼
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Creating a Dictionary

• >>> eng2cn = dict()

• >>> print(eng2cn)

• {}

• >>> 

• >>> eng2cn['one'] = '一'

• >>> eng2cn['two'] = '二'

• >>> eng2cn['three'] = '三'

• >>> eng2cn['four'] = '四'

• >>> print(eng2cn)

• {'one': '一', 'two': '二', 'three': '三', 'four': '四'}

☼
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Creating a dictionary

• >>> eng2cn = {'two': '二', 'three': '三', 

'four': '四', 'one': '一'}

• >>> print(eng2cn)

• {'two': '二', 'three': '三', 'four': '四', 
'one': '一'}

• In general, the order of items in a dictionary is 
unpredictable

• Dictionaries are indexed by keys (including 
integers).  
☼
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Dictionary indexing

• >>> print(eng2cn['one'])

• 一

• >>> print(eng2cn['two'])

• 二

• >>> print(eng2cn['five'])

• Traceback (most recent call last):

• File "<input>", line 1, in <module>

• KeyError: 'five'

* If the index is not a key in the dictionary, 
Python raises an exception ☼
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Dictionary indexing

if 'five' in eng2cn:

print(eng2cn['five'])

#no output

>>> print(eng2cn.get('five'))

None

☼
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The in operator

• Note that the in operator works differently for 

dictionaries than for other sequences

• For strings, lists, and tuples,  x in y means whether 

x is an item in the sequence

• For dictionaries,  x in y checks whether x is a key in 

the dictionary ☼
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Keys and values

• The keys method returns a list of the keys in 
a dictionary

• The values method returns a list of the 
values

>>> print(eng2cn.keys())

dict_keys(['two', 'three', 'four', 

'one'])

>>> print(eng2cn.values())

dict_values(['二', '三', '四', '一'])
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Keys and values

• The items method returns a list of  tuple 
pairs of the key-value pairs in a dictionary

>>> print(eng2cn.items())

dict_items([('two', '二'), ('three', '

三'), ('four', '四'), ('one', '一')])

☼
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Example:

def histogram(seq):

d = dict()

for element in seq:

if element not in d:

d[element] = 1

else:

d[element] += 1

return d

h = histogram('brontosaurus')

print(h)

• Output:

{'a': 1, 'b': 1, 'o': 2, 'n': 1, 's': 2, 'r': 2, 'u': 2, 't': 1}

☼
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Example from Section 11.2, 

Think Python Ver 2.2.17



Example:

Another way to output results:

def print_hist(hist):

for key in hist:

print(key, hist[key])

h = histogram('brontosaurus')

print_hist(h)

Output:
a 1
b 1
o 2
n 1
s 2
r 2
u 2
t 1

☼
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Example from Chapter 11, 

Think Python Ver 2.2.17



Example:

Change the print_hist function:

def print_hist2(hist):

for key, value in hist.items():

print (key, value)

h = histogram('brontosaurus')

print_hist2(h)

Output:
a 1
b 1
o 2
n 1
s 2
r 2
u 2
t 1

☼
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Example from Chapter 11, 

Think Python Ver 2.2.17



Sorting the keys

Change the print_hist function:

def print_hist3(hist):

keys = hist.keys()

for key in sorted(keys):

print (key, hist[key])

h = histogram('brontosaurus')

print_hist3(h)

Output:
a 1
b 1
n 1
o 2
r 2
s 2
t 1
u 2

☼
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Example from Chapter 11, 

Think Python Ver 2.2.17



Using lists as values

• Inverting the mapping: What are the letters with a 

given count?
def invert_dict(d):

inv = dict()

for key in d:

val = d[key]

if val not in inv:

inv[val] = [key]

else:

inv[val].append(key)

return inv

☼

Fall, 2017 Programming for Business Computing 31

Example from Chapter 11, 

Think Python Ver 2.2.17



Inverting the Mapping: Example

def invert_dict(d):

inv = dict()

for key in d:

val = d[key]

if val not in inv:

inv[val] = [key]

else:

inv[val].append(key)

return inv

hist = histogram('parrot')

print (hist)

inverted = invert_dict(hist)

print (inverted)

Output:
{'a': 1, 'p': 1, 'r': 2, 't': 1, 'o': 1}
{1: ['a', 'p', 't', 'o'], 2: ['r']}

☼
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Example from Chapter 11, 

Think Python Ver 2.2.17



SETS
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Sets

• Identified by curly braces

• {'Marry', 'Bob', 'John'}

• {'Dean'} is a singleton

• Sets can only contain unique elements

• Duplicates are eliminated

• Immutable like tuples and strings ☼
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>>> cset = {11, 11, 22}

>>> cset
{11, 22} 

☼



Sets are Immutable

>>> aset = {11, 22, 33}

>>> bset = aset

>>> #union of two sets

>>> aset = aset | {55}

>>> 

>>> aset

{33, 11, 22, 55}

>>> bset

{33, 11, 22}

☼
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Sets have no Order

• >>> {1, 2, 3, 4, 5, 6, 7}

• {1, 2, 3, 4, 5, 6, 7}

• >>> {11, 22, 33}

• {33, 11, 22}

☼
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Sets do not Support Indexing

• >>> myset = {'大象', '長頸鹿', '蝸牛'}

• >>> myset

• {'蝸牛', '長頸鹿', '大象'}

• >>> myset[0]

• Traceback (most recent call last):

• File "<input>", line 1, in <module>

• TypeError: 'set' object does not support indexing

☼
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Examples

>>> alist = ['大象', '長頸鹿', '蝸牛', '大象', '猴子']

>>> aset = set(alist)

>>> aset

{'猴子', '蝸牛', '長頸鹿', '大象'}

>>> #set does not support + operation

>>> aset = aset + {'蟒蛇'}

Traceback (most recent call last):

File "<input>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'set' 
and 'set'

☼
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Boolean Operations on sets 

>>> aset = {11, 22, 33}

>>> bset = {12, 23, 33}

Union of two sets
>>> aset | bset
{33, 22, 23, 11, 12}

Intersection of two sets:
>>> aset & bset
{33} 

☼
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Boolean Operations on sets 

>>> aset = {11, 22, 33}

>>> bset = {12, 23, 33}

Difference:
>>> aset - bset
{11, 22}

Symmetric difference:
>>> aset ^ bset
{11, 12, 22, 23} 

☼

Contains all elements that are either 

in set A but not in set B or 

in set B but not in set A 
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DATETIME
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• Python has a build-in library “datetime” that can process 

date and time data. 

• Need to do “import datetime” first

>>> import datetime

>>> #create datetime by year, month, day

>>> d1=datetime.datetime(2005,5,3)

>>> d1

datetime.datetime(2005, 5, 3, 0, 0)

>>> print(d1)

2005-05-03 00:00:00
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Handling Date and Time in Python

☼



>>> #create datetime by

>>> #   year, month, day, hour, minute, second

>>> d2=datetime.datetime(2017, 2, 5, 8, 5, 20)

>>> d2

datetime.datetime(2017, 2, 5, 8, 5, 20)

>>> print(d2)

2017-02-05 08:05:20

>>> #extract the date components

>>> d2.date()

datetime.date(2017, 2, 5)

>>> #extract the time component

>>> d2.time()

datetime.time(8, 5, 20)
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The datetime Object

☼



• >>> #get day-of-week

• >>> ##Monday is 0 and Sunday is 6

• >>> d2.date().weekday()

• 6

• >>> #return today's date

• >>> datetime.date.today()

• datetime.date(2017, 8, 22)
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Getting Date-of-Week, and Today’s Date

☼



• >>> #get value  of each slot

• >>> d2.year

• 2017

• >>> d2.month

• 2

• >>> d2.day

• 5

• >>> d2.hour

• 8

• >>> d2.minute

• 5

• >>> d2.second
• 20
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Getting the Value of Each Slot

☼



• >>> d3=datetime.datetime(1998, 2, 5, 8, 5, 20)

• >>> d4=datetime.datetime(1999, 2, 1, 22, 4, 15)

• >>> diff = d4 - d3

• >>> #difference in days + seconds

• >>> diff

• datetime.timedelta(361, 50335)

• >>> print(diff)

• 361 days, 13:58:55

• >>> #get individual slots

• >>> diff.days

• 361

• >>> diff.seconds

• 50335
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Difference of Datetime

☼



• >>> diff2 = datetime.timedelta(days=3,seconds=4)

• >>> d5 = datetime.datetime(2000,1,1,0,0,0)

• >>> d6 = d5 + diff2

• >>> print(d6)

• 2000-01-04 00:00:04
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Time Shifting by timedelta

☼



• >>> #datetime to string

• >>> d7 = datetime.datetime(2002,5,2,13,15,45)

• >>> print(str(d7))

• 2002-05-02 13:15:45

• >>> print(d7.strftime('%Y-%m-%d'))

• 2002-05-02

• >>> print(d7.strftime('%B %d, %Y'))

• May 02, 2002

• >>> print(d7.strftime('%Y-%m-%d %H:%M:%S'))

• 2002-05-02 13:15:45

• >>> print(d7.strftime('%Y-%m-%d %I:%M:%S %p, %A'))

• 2002-05-02 01:15:45 PM, Thursday

• >>> 
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DatetimeString

☼



• >>> #string to datetime.

• >>> dstr = "2007-03-04 21:08:12"

• >>> d9 = datetime.datetime.strptime(dstr, "%Y-%m-%d

%H:%M:%S")

• >>> d9

• datetime.datetime(2007, 3, 4, 21, 8, 12)

• Full document here: 

https://docs.python.org/3/library/datetime.html#st

rftime-strptime-behavior
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DatetimeString

☼

https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior


THANK YOU!
Questions?
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